Exact soliton solutions of the one-dimensional complex Swift-Hohenberg equation

نویسنده

  • Ken-ichi Maruno
چکیده

Using Painlevé analysis, the Hirota multi-linear method and a direct ansatz technique, we study analytic solutions of the (1+1)-dimensional complex cubic and quintic Swift-Hohenberg equations. We consider both standard and generalized versions of these equations. We have found that a number of exact solutions exist to each of these equations, provided that the coefficients are constrained by certain relations. The set of solutions include particular types of solitary wave solutions, hole (dark soliton) solutions and periodic solutions in terms of elliptic Jacobi functions and the Weierstrass ℘ function. Although these solutions represent only a small subset of the large variety of possible solutions admitted by the complex cubic and quintic Swift-Hohenberg equations, those presented here are the first examples of exact analytic solutions found thus far.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Composite solitons and two-pulse generation in passively mode-locked lasers modeled by the complex quintic Swift-Hohenberg equation.

The complex quintic Swift-Hohenberg equation (CSHE) is a model for describing pulse generation in mode-locked lasers with fast saturable absorbers and a complicated spectral response. Using numerical simulations, we study the single- and two-soliton solutions of the (1+1)-dimensional complex quintic Swift-Hohenberg equations. We have found that several types of stationary and moving composite s...

متن کامل

Multi-soliton of the (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff equation and KdV equation

A direct rational exponential scheme is offered to construct exact multi-soliton solutions of nonlinear partial differential equation. We have considered the Calogero–Bogoyavlenskii–Schiff equation and KdV equation as two concrete examples to show efficiency of the method. As a result, one wave, two wave and three wave soliton solutions are obtained. Corresponding potential energy of the solito...

متن کامل

Exact Solutions of the One-Dimensional Quintic Complex Ginzburg-Landau Equation

Exact solitary wave solutions of the one-dimensional quintic complex Ginzburg-Landau equation are obtained using a method derived from the Painlevé test for integrability. These solutions are expressed in terms of hyperbolic functions, and include the pulses and fronts found by van Saarloos and Hohenberg. We also find previously unknown sources and sinks. The emphasis is put on the systematic c...

متن کامل

Topological soliton solutions of the some nonlinear partial differential equations

In this paper, we obtained the 1-soliton solutions of the symmetric regularized long wave (SRLW) equation and the (3+1)-dimensional shallow water wave equations. Solitary wave ansatz method is used to carry out the integration of the equations and obtain topological soliton solutions The physical parameters in the soliton solutions are obtained as functions of the dependent coefficients. Note t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002